Positive and negative regulation of T cell responses by fibroblastic reticular cells within paracortical regions of lymph nodes

نویسندگان

  • Stefanie Siegert
  • Sanjiv A. Luther
چکیده

Fibroblastic reticular cells (FRC) form the structural backbone of the T cell rich zones in secondary lymphoid organs (SLO), but also actively influence the adaptive immune response. They provide a guidance path for immigrating T lymphocytes and dendritic cells (DC) and are the main local source of the cytokines CCL19, CCL21, and IL-7, all of which are thought to positively regulate T cell homeostasis and T cell interactions with DC. Recently, FRC in lymph nodes (LN) were also described to negatively regulate T cell responses in two distinct ways. During homeostasis they express and present a range of peripheral tissue antigens, thereby participating in peripheral tolerance induction of self-reactive CD8(+) T cells. During acute inflammation T cells responding to foreign antigens presented on DC very quickly release pro-inflammatory cytokines such as interferon γ. These cytokines are sensed by FRC which transiently produce nitric oxide (NO) gas dampening the proliferation of neighboring T cells in a non-cognate fashion. In summary, we propose a model in which FRC engage in a bidirectional crosstalk with both DC and T cells to increase the efficiency of the T cell response. However, during an acute response, FRC limit excessive expansion and inflammatory activity of antigen-specific T cells. This negative feedback loop may help to maintain tissue integrity and function during rapid organ growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibroblastic Reticular Cells From Lymph Nodes Attenuate T Cell Expansion by Producing Nitric Oxide

Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this fe...

متن کامل

Spatial and molecular organization of lymph node T cell cortex: a labyrinthine cavity bounded by an epithelium-like monolayer of fibroblastic reticular cells anchored to basement membrane-like extracellular matrix.

Naive T cells encounter antigen-presenting cells within the cortex of lymph nodes to initiate primary immune responses. Within this T cell cortex is the reticular network (RN)--a system of collagen fibers and extracellular matrix (ECM) wrapped by fibroblastic reticular cells (FRC). We have investigated the distribution of various molecules, including ECM proteins and proteoglycans, in the T cel...

متن کامل

Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality

Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We ...

متن کامل

IL-17 and IL-4 Producing CD8+ T Cells in Tumor Draining Lymph Nodes of Breast Cancer Patients: Positive Association with Tumor Progression

Background: CD8+ cytotoxic T lymphocytes have been recently divided based on their cytokine expression profile. Objective: To evaluate the percentages of CD8+ lymphocytes and their effector subsets including Tc1, Tc2 and Tc17 in the tumor draining lymph nodes (TDLNs) of patients with breast cancer. Methods: Single cell suspensions were obtained from TDLNs of 42 patients with breast cancer. Stai...

متن کامل

Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle.

The connective tissue of any organ in the body is generally referred to as stroma. This complex network is commonly composed of leukocytes, extracellular matrix components, mesenchymal cells, and a collection of nerves, blood, and lymphoid vessels. Once viewed primarily as a structural entity, stromal cells of mesenchymal origin are now being intensely examined for their ability to directly reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012